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LETTER TO THE EDITOR 

A new method for simulation of real chains: scanning 
future steps 

Hagai Meirovitch 
Chemical Physics Department, Weizmann Institute of Science, Rehovot, 76100, Israel 

Received 7 July 1982 

Abstract. A new method for simulating real polymer chains is developed and applied to 
self-avoiding walks (SAWS) of length 49-599 on a three-choice square lattice. Very good 
results for the entropy are obtained which deviate from the series expansion estimates by 
0.1-2%. We also discuss how to extend the method to models of polymer chains with 
both excluded volume and finite interactions (attractive or repulsive). Our method is 
expected to be more efficient than other simulation methods for treating self-interacting 
SAWS and chains which are subject to various lattice constraints. 

In this letter we describe a new computer simulation method for real polymer chains 
and apply it preliminarily to self-avoiding walks (SAWS) (chains with excluded volume 
(EV)) on a three-choice square lattice. We also discuss how to extend the method to 
polymer chains with both EV and finite interactions (attractive or repulsive). The 
method is based on the concepts of a stochastic process described recently for the 
square Ising lattice (Meirovitch 1982a). These concepts have very recently been used 
to develop a technique for estimating the entropy of macromolecules with computer 
simulation (Meirovitch 1982b). 

SAWS can be generated on a lattice by direct Monte Carlo (Wall et al 1954, 1963) 
which is an exact but extremely inefficient procedure, due to ‘sample attrition’ which 
can be characterised by the expression: 

WN/ WO = exp(-AN) for large N. (1) 
W, is the number of SAWS of N steps generated in the process out of WO, the 

number of walks started, and A is the attrition constant. In order to enrich samples 
of long SAWS, several methods have been suggested (Wall et a1 1963, Rosenbluth and 
Rosenbluth 1955, Verdier and Stockmayer 1962), where the most efficient is the 
dimerisation method (Alexandrowicz 1969). In the present work we develop a method 
which reduces sample attrition considerably by taking into account, in each step of 
chain construction, the possible future steps. We expect the procedure to be much 
more efficient then the above mentioned methods for treating self-interacting SAWS 
(McCrackin et a1 1973) or chains which are subject to boundary constraints or other 
lattice restrictions (Kremer 1981). 

Let us first describe an exact procedure for generating SAWS with equal probability. 
Consider a lattice of any dimensionality with coordination number q, and let us 
construct a SAW which starts from the origin of the coordinate system. The first bond 
(step) is determined in one of 4 directions with equal probability l/q. In the next 
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steps of the process (k > l), the probability to select a direction v (v = 1 , .  , , q) out 
of q - 1 allowed ones is not constant l / (q  - l), as with the direct Monte Carlo procedure 
(Wall et a1 1954), but becomes a function of step k in the following way: assume that 
we are at the kth step of the process, i.e. k - 1 directions of the chain vl,. . . , V k - l  

have already been determined and we want to specify v k .  The exact transition 
probability p k ( Y I Y 1 ,  . . . , V k - l ) ,  for selecting a direction v should take into account all 
of the possible partial SAWS of N - k + 1 bonds, which can be obtained in future steps 
of the process (steps k, . . . , N ) .  Those as yet undetermined partial SAWS should be 
distinguished from the k - 1 bonds already fixed and therefore we call them the future 
SAWS. One can calculate M;I (vl ,  . . . , v k - l ) ,  the number of future SAWS starting with 
a direction v at step k (for a given set of v l , .  . . , V k - l ) ,  and define the transition 
probability for v 

p k ( v I v 1 ,  - * * 3 v k - 1 )  =ML (v1 .3  - * - v k - l ) / z  ( v 1 ,  * * * v k - 1 ) .  (2) 
Y 

zlk is selected by a lottery according to the P k ' s  and the process continues. Once 
a SAW i of N bonds has been constructed, one knows its construction probability Pi, 
which is the product of the N sequential transition probabilities with which the 
directions V I ,  . . . , vN have been chosen 

At each step of a particular construction all the possible future SAWS are taken into 
account with equal probability. Furthermore, a construction cannot fail ( V k  which 
might lead to a failure is associated with ML = 0 which means zero transition probabil- 
ity). Hence, for all i ,  Pi = C,' (where CN is the total number of SAWS of length N )  
which means that the entropy S has zero fluctuations (Meirovitch and Alexandrowicz 
1976), 

(4) 

where kg is the Boltzmann constant. We shall also be interested in SEV, the entropy 
due to the EV effect 

s = kg log CN 

S E V  = SI - s  ( 5 )  
where SI is the entropy of an ideal chain (without EV) of length N .  Obviously, this 
exact construction procedure is impractical for large N and we therefore suggest 
approximating it by defining, in the same manner as equation (2), transition prob- 
abilities P k ( v I v 1 , .  . . , v k - l , b )  based on future SAWS consisting only of a few bonds 6, 
rather than of N-k + 1  (strictly speaking the length of a future SAW is b '= 
min (6, N - k + 1)). In this case, a probability Pi@) can be defined for SAW i :  

However, it should be pointed out that, in contrast to Pi (equation (3)), Pi@) depends 
on i since not all future SAWS are taken into account for their entire length. For that 
reason not every SAW attempted with the approximation procedure can successfully 
be completed, and hence Pi(b) is not normalised in the ensemble of all SAWS, i.e., 
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The normalised probability PI (b) is 

PI ( b )  = Pj(b) /A.  (8) 
It is convenient to express the statistical properties of our approximate procedure 
using the approximate entropy functions S’ (b ) ,  and Skv(b) 

S’ (b )  5 -kg PI (b) log PI (b) (9) 

S k v ( b )  = S I - S ’ ( b ) .  (10) 

i 

Obviously, S’(6)  is never larger than the true entropy S (equation (4)) and therefore 
Skv(b) asEv. Also, both S’ (b )  and S&(b)  are expected to approach the true values 
monotonically with improving the approximation, i.e. increasing b. Skv (b)  SE^ 
constitutes, therefore, a measure for the bias due to employment of approximate 
probabilities P f  ( 6 )  instead of the exact Pi. Another measure of this bias is the standard 
deviation of S’ (b ) ,  b S ’ ( b )  which is expected to decrease monotonically to zero with 
increasing b (Meirovitch and Alexandrowicz 1976). This bias can be removed by 
dividing each microscopic quantity obtained in the simulation by Pi (6) (equation (6)); 
in this case the entropy SEV, for example, is estimated by S&b) 

where i ( t )  is SAW i sampled at time t of the process and n is the sample size. This 
procedure was first suggested by Rosenbluth and Rosenbluth who applied it to SAWS 
using our lowest approximation b = 1 (Rosenbluth and Rosenbluth 1955); more 
recently this method (with b = 1) was extended to self-interacting SAWS (Mazur and 
McCrackin 1968, McCrackin et a1 1973, Mazur et a1 1973). It should be pointed 
out, however, that while the method is exact for an infinite sample (for any value of 
b), the results obtained from a finite sample can still be biased, due to the occurrence 
of an improbable fluctuation which dominates the summation (equation (1 1)) (see 
McCrackin 1972). Therefore, in order to increase accuracy, either the sample size 
should be increased or the fluctuation in entropy AS’@) should be decreased by 
increasing b. 

Since the essential contribution to sample attrition comes from the short loops, 
one would expect to obtain a significant decrease in A (equation (1)) already by using 
small values of b. Our method is also expected to be useful for generating chains 
with EV as well as finite interactions. In this case, however, for each step k of the 
process, one has to calculate the energy of every future SAW I starting in direction 
v. El(v) takes into account the interaction energy between future steps of I among 
themselves and the interaction energy between future steps of I and the k - 1 past 
steps. M;I (6) is then defined by Boltzmann factors 

where T is the absolute temperature. The transition probabilities are defined with 
the help of equation (2). It should be pointed out that with this procedure, the 
intra-chain interactions are taken into account in the process of construction and 
therefore, for self-interacting SAWS, one would expect this method to be more efficient 
than other simulation methods (Wall et a1 1963, Alexandrowicz 1969) which consider 
only the chain self-avoidance. For similar reasons, we also expect our method to be 
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more suitable than the methods mentioned above for treating chains which are subject 
to various lattice restrictions (Kremer 1981, McCrackin 1966). 

Confining ourselves at present to SAWS with EV alone, we have generated SAWS 

of length N = 49,99,199, 399 and 599 on a three-choice square lattice for five values 
of b ;  6 = 1 , 2 , 4 , 6  and 8. The chain is generated step by step where at each step all 
the future SAWS of length 6 are generated by the computer, the transition probabilities 
Pk(v(vl,. . . , vk-l, b )  (equations (2) and (6)) are calculated and a direction v is then 
selected by a MAnte Carlo lottery. The quantities SLv(6) and AS’(6) are estimated 
by skv ( b )  and A S ( b )  respectively, 

The results for s L v ( b ) ,  hS’(b) and sEv(6) (equation (11)) appear in table 1. In these 
calculations the normalisation factor A for PI ( 6 )  (equation ( 8 ) )  has been estimated 
by the ratio A = WN/ WO ( WN = n). For comparison we also present in the table results 
for SEV obtained with the asymptotic formula for CN 

and equations (4) and (5). In this calculation the best series expansion estimates for 
CO, y and p (equation (1’5)) are taken from McKenzie (1976). 

The efficiency of our method in generating SAWS is expressed by the attrition 
constant A calculated with equation (1) from the results for WO and WN. Obviously, 
increasing b should lead to a decrease in A but also to an exponential increase 
(-(q - l)b) in the computer time required to generate the future SAWS. We therefore 
also provide in the table the average computer time required for generating 1000 
SAWS, which takes into account these two opposing effects. 

The sample size is relatively small and ranges from 500 ( b  = 8, n = 399) to lo4. 
Only for N = 49, b = 1 and b = 2 is a relatively large sample ( n  - 10’) used. For 
N = 49,6 = 1 the result for sEv deviates by -10% from the series expansion estimate; 
this deviation decreases dramatically with increasing 6 ,  down to -0.1% for 6 = 8. 
The same behaviour is also observed for the other values of N but, as expected, the 
accuracy of the best results decreases with increasing N ;  however, even for the larger 
chains the results are very good. Their deviation from the series expansion estimates 
is less than 1% for N = 399, 6 = 8 and about 2% for N = 599, b = 6. In order to 
examine the effect of sample size on the bias we have employed for N = 49, 6 = 1 
and b = 2 relatively large samples of n - lo5. However, the results for SE, did not 
improve in the range n = lo4 to lo5  but rather fluctuated slightly around the values 
appearing in the table; this indicates that it is more efficient to decrease the bias by 
increasing 6 than by increasing sample size n .  The results for &(b)  always overesti- 
mate the correct values (see discussion in previous section), and for all N they improve 
significantly with increasing b. However, the best values for S k v ( b )  deviate by 1-12% 
from the series expansion estimates, which is a deviation about an order of magnitude 
larger than that obtained €or SEV(b). As is also expected, for each N ,  h S ’ ( 6 )  decreases 
with increasing b. 
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Table 1. Results for the entropy SEv(b) (equation (11)) and Skv(b) (equations (9) and 
(13)) obtained for chains of length N and future SAWS of length b. @(b) is the calculated 
fluctuation of S&(b)  obtained with equation (14) and A is the attrition constant calculated 
with equation (1). Series expansion estimates for the entropy have been obtained with 
equations (4), (5) and (15) using the best parameters from McKenzie (1976). The estimated 
statistical error is denoted by parentheses, e.g., 0.1026(2) = 0.1026*0.0002. F o r n ' ( b )  
and A the results are rounded off to two significant figures. f is the average time (in 
seconds) required to generate 1000 SAWS on the Golem B computer. 

49 1 0.0927 (3) 0.1444 (3) 0.048 0.011 13 
2 0.09953 ( 5 )  0.12037 ( 5 )  0.032 0.0040 18 
4 0.1026(2) 0.1088 (2) 0.019 0.00077 84 
6 0.1033(1) 0.1053 (1) 0,011 0.00012 550 
8 0.1035 (1) 0.1044 (1) 0.0070 0.000020 750 

series 0.1035 0.1035 

99 1 O . l O O ( 1 )  0.163 (1) 0.038 0.015 48 
2 0.1067 (3) 0.1373 (3) 0.027 0.0070 50 
4 0.1115(1) 0.1240 (1) 0.021 0.0020 190 
6 0.1129(1) 0.1197 (1) 0.016 0.00075 1220 
8 0.1134(1) 0.1174 (1) 0.014 0.00030 8240 

series 0.1137 0.1137 

199 1 0.096 (4) 0.174 (1) 0.029 0.018 460 
2 O . l l O ( 1 )  0.1483 (2) 0.023 0.0093 220 
4 0.1164(2) 0.1356 (1) 0.019 0.0035 520 
6 0.1183(2) 0.1302 (2) 0.017 0.0017 2930 
8 0.1195 (3) 0.1272 (3) 0.014 0.00086 18300 

series 0.1199 0.1199 

399 2 0.111 (3) 0.155 (1) 0.018 0.011 3260 
4 0.1192(2) 0.1422 (2) 0.016 0.0047 2370 
6 0.1210(2) 0.1370 (5) 0.015 0.0025 8800 
8 0.1225 (3) 0.1344 (3) 0.013 0.0015 50000 

series 0.1236 0.1236 

599 4 0.120(1) 0.1450 (2) 0.014 0.0053 10000 
6 0.1225 (3) 0.1398 (3) 0.012 0.0030 2 1000 

series 0.1250 0.1250 

For each value of N we observe in the table a significant decrease in A with 
increasing b :  the ratio A (b  = l ) / A  (b  = 8) is -550 for N = 49 and decreases to -21 
for N = 199. For each b, A increases monotonically in going from N = 49 to N = 599, 
which is due to the larger loops which can be formed in the longer chains but not in 
the shorter ones. It should be noted that the value of A for N = 599, b = 6 is about 
40 times smaller than the value A =0.128 obtained for the direct Monte Carlo 
procedure for the infinite chain (Wall er af 1963). This decrease in A should be 
compared to the significantly smaller decrease in A (about 3 times) obtained with the 
method of strides (Wall er a1 1957). The calculations have been carried out on the 
Golem B computer of the Weizmann Institute, which is -3 times slower than the 
IBM 370/165 (using the Q compiler). In the 1ast.column of the table we present for 
each pair of N and b the average computer time t required for generating 1000 SAWS. 
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For the shorter chains (where only short loops can occur) one would expect the 
calculations with 6 = 1 to be the most efficient since future SAWS of size 1 are already 
sufficient to avoid most of the chain self-intersections. However, for longer chains, 
sample attrition with 6 = 1 is significant and therefore, in order to increase efficiency, 
larger values of 6 should be employed. Indeed, for N = 49, chain generation with 
6 = 1 is the most efficient (13 seconds); for N = 99,6  = 1 and 6 = 2 have a comparable 
efficiency whereas for N = 199 and N = 399, larger values of 6, 6 = 2 and 6 = 4 
respectively, lead to the most efficient chain generation. It should also be pointed out 
that for N = 399, 6 = 1 and N = 599, b = 1 and 2 chain generation has been found to 
be highly inefficient and the results for sEv(6) did not converge, We therefore do not 
present them in the table. 

In summary, we have developed a method for generating real chains, based on 
scanning future steps, and have applied it preliminarily to SAWS on a three-choice 
square lattice. The new procedure enables one to reduce systematically the bias in 
the results for the entropy by increasing b, the length of the future SAWS. Our lowest 
approximation (6 = l ) ,  which is identical to the method suggested by Rosenbluth and 
Rosenbluth, provides relatively poor results for the entropy which deviate from the 
series expansion estimates by lO-l6%. We point out this fact in view of the extensive 
employment of this procedure (with 6 = 1) for SAWS, self-interacting SAWS (Mazur 
and McCrackin 1968, McCrackin 1972, McCrackin er a1 1973, Mazur et a1 1973) 
and other systems (McCrackin 1966). 

Ouibest approximations (b  = 8 and 6 = 6 for N = 599) lead to very good estimates 
for the entropy (with accuracy of 0.1-2%) and to a significant decrease in sample 
attrition. It should be pointed out that at this stage our procedure is still significantly 
less efficient than the dimerisation method, where SAWS of N -8000 have been 
generated (Alexandowicz 1969). However, we expect our method to be more efficient 
than other methods (Wall et af 1963, Alexandrowicz 1969) €or treating self-interacting 
SAWS and chains which are subject to boundary restrictions or other lattice constraints 
(Kremer 1981, McCrackin 1966). At present we are also studying (for significantly 
larger samples) geometrical properties such as the end-to-end distance, the radius of 
gyration, etc, for chains on both square and simple cubic lattices. 

This work has been supported by the Sir Charles Clore-Weizmann Fund Post Doctoral 
Fellowships. I would like to thank Professor Z Alexandrowicz for helpful discussions. 
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